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Abstract: In order to solve the shortcomings of Fruit Fly Optimization Algorithm (FOA), 
which is slow and easy to fall into local optimum, can not specify the domain, Fruit Fly 
Optimization Algorithm and logstic function transformation are combined to propose an 
adaptive step improved fruit fly optimization algorithm with logistic transform 
(ASFOALT). The algorithm improves the correctness of the optimal solution range by 
improving the fitness function of the FOA, and improves the overall performance of the 
algorithm by adding the adaptive step mechanism. The experimental results show that 
ASFOALT has a large improvement in global search capability, convergence speed, 
convergence accuracy and reliability.  

1.  Introduction 

Fruit Fly Optimization Algorithm(FOA) is a grouped intelligence algorithm proposed by Dr. Pan 
WT in 2011 based on the characteristics of fruit fly foraging behavior and the global optimal 
solution[1,2].The algorithm improves the diversity of fruit fly melanogaster by olfactory search, 
increases the search space of fruit fly individuals, and rapidly converges the fruit flies  by visual 
search to achieve the optimal solution. The algorithm has the characteristics of less parameters, fast 
calculation speed, strong global optimization ability and easy implementation. It can be widely used 
in science and engineering field, and can be used together with other data mining techniques, It has 
been successfully applied to BP neural Network clustering analysis[3], support vector machine 
(SVM) parameter optimization[4], blind source separation[5] and other fields. On the other hand, 
FOA also has the problem that the domain of optimization can not be specified, the search direction 
is blind, the optimization is easy to fall into the local optimal, the later convergence speed is slow 
and the convergence precision is low. Therefore, many scholars have done a different degree of 
improvement on the FOA.Han JY[6] and others, combining chaos optimization with the fruit fly 
algorithm, proposed adaptive chaos fruit fly optimization algorithm; Ning Jianping[7] and others, 
applied the step size of the decreasing algorithm to Fruit Fly Optimization Algorithm, which makes 
Fruit Fly Optimization Algorithm have strong global search ability at the initial stage, so as to 
effectively avoid the local optimal problem. Yang Shuquan[8] and others proposed a clustering 
analysis algorithm(Flow-IFOA) based on the improved fruit fly optimization algorithm and 
functional flow algorithm, by introducing the fruit fly factor, the search step size of each fruit fly 
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 _iY Y axis R   

Step3 Since the food location cannot be known, the distance to the origin is thus estimated first 
(Dist), then the smell concentration judgment value (Js) is calculated, and this value is the 
reciprocal of distance. 

2 2
i iDist X Y 

 

1
Js

Dist


 

Step4 Substitute smell concentration judgment value (Js) into smell concentration judgment 
function (or called Fitness function) so as to find the smell concentration (Smelli) of the individual 
location of the fruit fly. 

( )i iSmell Function Js  

Step5 Find out the fruit fly with maximal smell concentration (finding the maximal value 
Smellbest) among the fruit fly swarm. (Best individual FFbest). 

max( )bestSmell Smell  

.bestBest Smell index  

[ , ]best best bestFF X Y  

Step6 Keep the best smell concentration value and x, y coordinate, and at this moment, the fruit 
fly swarm will use vision to fly towards that location. 

bestBestSmell Smell  

[ _ , _ ] bestX axis Y axis FF  

Step7 Enter iterative optimization to repeat the implementation of steps 2–5, then judge if the 
smell concentration is superior to the previous iterative smell concentration, if so, implement step 6. 

3.  Improvement of Algorithm  

3.1. Improvement based on Fruit Fly Optimization Algorithm 

In the process of overall iterative optimization, FOA substitute the reciprocal of the distance each 
fruit fly to the origin into Fitness function to get the optimal solution, so the searching range(or call 
domain) of fruit fly swarm is not domain of Fitness function, the optimal solution obtained by the 
fitness function is probably not the solution within the specified range. For example, use FOA to get 
the minimum value of the sine function f(x)=sin(x),x∈[2,4] will get the global optimal value 
f(x)=-1 Instead of the optimal value f(x)=-0.7568 within domain x∈[2,4], this means that FOA is 
unable to specify the search range (or call  domain).  In order to solve this problem, this paper 
improves the initial range of the fruit fly swarm, the calculation method of smell concentration 
judgment value and the fitness function of the FOA. 

The proceed of the improved fruit fly optimization algorithm as follows: 
Step1 Perform the steps 1 to 5 in FOA. 
Step2 First, estimated the distance each fruit fly to the origin (Dist), than 
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performs a modulus on 1 to put the value(smell concentration judgment value, Js) 
in the proper range. 

2 2
i iDist X Y   

%1Js Dist  

Step3 Map the smell concentration judgment value(Js) to the domain([Min,Max]). 

( )Js Min Js Max Min     

Step4 Perform the steps 4 to 7 in FOA. 
The improved fruit fly optimization algorithm can overcome the defects in FOA that can not 

specify the search range by mapping the smell concentration judgment value(Js) within the range 
[0,1] to the specified domain. In the following experimental section, the effectiveness of this 
improvement will be verified by multiple functions. 

3.2. Adaptive step size based on logistic transform 

In each iteration, Fruit Fly Optimization Algorithm take the best individual of last iteration as the 
center and take the random distance(R) as the radius to search the food, but the random distance(R) 
is a fixed value. If R is a large value, the algorithm will get better performance in global 
optimization, can quickly locate the approximate range of the optimal solution, but in the process of 
local optimization, convergence accuracy and search efficiency of the algorithm can not be 
guaranteed. If R is a smaller value, the algorithm is easily trapped in the local optimum and 
appeared premature convergence, whole search efficiency is limited even in unimodal functions. 

In order to resolve this problem, we have introduced a function based on Logistic Function 
transformation. 

20( 0.5)

1

1 x
LT

e 


  x∈[0,1]          (1) 

Set the Adaptive step size(RV). 

( )
Gen

RV R LT
Maxgen

             (2) 

In this formula, R is the initial step size(or call random distance) of FOA, Gen is iterations, 
Maxgen is maximum number of iterations, function LT is a correction function and the graph as 
shown in the Fig.2. 

adaptive step size adjustment technology can make Fruit Fly Optimization Algorithm have a 
larger random step value(RV) in early iterations to avoid premature convergence, as the number of 
iterations increases RV will decreased by Logistic Function curve; in later iterations, smaller step 
size make Fruit Fly Optimization Algorithm have powerful local optimization performance. 
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function, but ASFOALT raise 8 orders of magnitude at least than FOA. In addition, the optimal 
solution obtained of sine Function by FOA is not within the specified domain([2,4]), but ASFOALT 
successfully converged to the optimal value, this also proves that FOA is unable to specify the 
domain. Sine Rate is a multimodal function, because FOA can not specify the domain and the 
search step is fixed value, this algorithm is not stable and the standard deviation is large, the effect 
of convergence accuracy far from ideal. Unlike FOA, ASFOALT effectively overcome premature 
convergence by adaptive step size adjustment technology and increase global optimization 
capability and precision of solutions. 

Table. 1 Test function 

Name Function form Domain Optimum solution Target precision 

Sphere 
2

1

n

i

f x


 
 

[-100,100] 0 510  

Rosenbrock 1
2 2 2

1
1

(100( ) ( 1) )
n

i i i
i

f x x x





     
[-30,30] 0 30  

Schaffer 2 2 2
1 2

2 2 2
1 2

sin 0.5
0.5

.

x x
f

x x

 
 

（1+0001（ ）)
 

[-100,100] -1 510  

Rastrigin 2( 10cos(2 ) 10)
1

n
f x xi ii

  


 
[-5.12,5.12] 0 410  

Ackley 2

1 1

1 1 1
cos(2 )

5
20 20

n n

i i
i i

x x
n nf e e e


 

  
      

[-32,32] 0 510  

Griewank 2
2

1 1

1
cos( ) 1

4000

nn
i

i i

x
f x

i 

     [-600,600] 0 610  

Sine 
7 sin( )f x  [2,4] -0.75680 510

 

Sine Rate 
8 sin( ) /f x x  [2,6] -0.28690 510  
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Table. 2 Result of the experiment	

Name Algorithm Min Max Mean Std Dev 
Sphere FOA 2.4733e-06 0.0158 0.0035 0.0054 

ASFOALT 2.8564e-12 6.0076e-11 3.4597e-12 1.5677e-12 
Rosenbrock FOA 28.5742 29.3921 28.7633 0.2741 

ASFOALT 1.0122e-13 6.6795e-08 1.1501e-10 4.2457e-09 
Schaffer FOA -0.9999 -0.9998 -0.9999 2.1645e-06 

ASFOALT -1 -1 -1 0 
Rastrigin FOA 0.0012 0.0022 0.0015 3.2615e-05 

ASFOALT 0 2.9624e-12 2.3182e-15 1.5426e-14 

Ackley FOA 0.0031 0.0547 0.0293 1.1521e-04 
ASFOALT 2.6501e-15 7.5648e-15 4.3350e-15 1.8448e-17 

Griewank FOA 7.3842e-06 4.3715e-05 1.2016e-06 6.3257e-07 
ASFOALT 0 0 0 0 

Sine FOA -0.9999e-10 -0.9999e-9 -0.9999e-10 1.1622e-11 
ASFOALT -0.75680 -0.75680 -0.75680 1.6975e-15 

Sine rate FOA -0.68245 -0.67272 -0.67957 1.7332e-03 
ASFOALT -0.28690 -0.28690 -0.28690 6.0562e-16 

6.  Conclusion 

For the FOA can not specify the domain of optimization, the optimization accuracy is not high 
and easy to fall into the local optimal characteristics, by the improved fruit fly optimization 
algorithm and adaptive step size adjustment techniques combined, proposed an adaptive step 
improved fruit fly optimization algorithm with logistic transform (ASFOALT). And the experiments 
show that the proposed algorithm(ASFOALT) can specify the search range and on this basis,it has a 
lot of improvements than FOA in global search capability, convergence speed, convergence 
accuracy and reliability. 
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